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NUMBERS OF SOLUTIONS OF EQUATIONS

IN FINITE FIELDS

ANDRÉ WEIL

The equations to be considered here are those of the type

(1) a0xn0
0 +a1xn1

1 +·· ·+ar xnr
r = b.

Such equations have an interesting history. In art. 358 of the Disquisitiones [1, a],1

Gauss determines the Gaussian sums (the so-called cyclotomic “periods”) of order 3,
for a prime of the form p = 3n + 1, and at the same time obtains the number of so-
lutions for all congruences ax3 −by3 ≡ 1 (mod p). He draws attention himself to the
elegance of his method, as well as to its wide scope; it is only much later, however, viz.
in his memoir on biquadratic residues [1, b], that he gave in print another application
of the same method; there he treats the next higher case, finds the number of solutions
of any congruence ax4 −by4 ≡ 1 (mod p), for a prime of the form p = 4n +1, and de-
rives from this the biquadratic character of 2 mod p, this being the ostensible purpose
of the whole highly ingenious and intricate investigation. As an incidental consequence
(“coronodis loco,” p. 89), he also gives in substance the number of solutions of any con-
gruence y2 ≡ ax4 −b (mod p); this result includes as a special case the theorem stated
as a conjecture (“observatio per inductionem facta gravissima”) in the last entry of his
Tagebuch [1, c];2 and it implies the truth of what has lately become known as the Rie-
mann hypothesis, for the function–field defined by that equation over the prime field of
p elements.

Gauss’ procedure is wholly elementary, and makes no use of the Gaussian sums,
since it is rather his purpose to apply it to the determination of such sums. If one tries
to apply it to more general cases, however, calculations soon become unwieldy, and one
realizes the necessity of inverting it by taking Gaussian sums as a starting point. The
means for doing so were supplied, as early as 1827, by Jacobi, in a letter to Gauss [2, a] (cf.
[2, b]). But Lebesgue, who in 1837 devoted two papers [3, a,b] to the case n0 = ·· · = nr

of equation (1), did not succeed in bringing out any striking result. The whole problem
seems then to have been forgotten until Hardy and Littlewood found it necessary to ob-
tain formulas for the number of solutions of the congruence

∑
i xn

i ≡ b (mod p) in their
work on the singular series for Waring’s problem [4]; they did so by means of Gaussian
sums. More recently, Davenport and Hasse [5] have applied the same method to the
case r = 2,b = 0 of equation (1) as well as to other similar equations; however, as they

Received by the editors October 2, 1948; published with the invited addresses for reasons of space and
editorial convenience.

1Numbers in brackets refer to the bibliography at the end of the paper.
2It is surprising that this should have been overlooked by Dedekind and other authors who have discussed

that conjecture (cf. M. Deuring, Abh. Math. Sem. Hamburgischen Univ. vol. 14 (1941) pp. 197–198).
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2 ANDRÉ WEIL

were chiefly concerned with other aspects of the problem, and in particular with its re-
lation to the Riemann hypothesis in function–fields,3 the really elementary character of
their treatment does not appear clearly.

As equations of type (1) have again recently been the subject of some discussion (cf.
e.g. [6]), it may therefore serve a useful purpose to give here a brief but complete ex-
position of the topic. This will contain nothing new, except perhaps in the mode of
presentation of the final results, which will lead to the statement of some conjectures
concerning the numbers of solutions of equations over finite fields, and their relation to
the topological properties of the varieties defined by the corresponding equations over
the field of complex numbers.

We consider equation (1) over a finite field k with q elements; the ai are in k, and not
0; the ni are integers, which we assume to be > 0 (only trifling modifications would be
required if some were < 0). We shall first discuss the case b = 0.

Let therefore N be the number of solutions in k of the equation

a0xn0
0 +a1xn1

1 +·· ·+ar xnr
r = 0.

For each i , let di = (ni , q − 1) be the g.c.d. of ni and q − 1; for each i and each u in
k, let Ni (u) be the number of solutions of the equation xni = u; Ni (u) is 1 for u = 0,
and is otherwise equal to di or to 0 according as u is or is not a di th power in k. Put
L(u) =∑r

i=0 ai ui ; we have

(2) N = ∑
L(u)=0

N0(u0) · · ·Nr (ur ),

where the sum is taken over all sets of values for the ui satisfying L(u) = 0, or, as we
may say, over all points (u) = (u0, . . . ,ur ) in the linear variety defined by L(u) = 0 in the
vector–space of dimension r +1 over k.

If k∗ is the multiplicative group of all non–zero elements in k, we shall denote by
the letter χ any character of k∗; as k∗ is cyclic of order q − 1, such a character is fully
determined if one assigns its value at a generating element w of k∗ (a “primitive root”),
and this value may be any (q −1)th root of unity. Selecting such an element w once for
all, we shall denote by χα the character of k∗ determined by χα(w) = e2πiα, where α is a
rational number satisfying (q−1)α≡ 0 (mod 1). We also put χα(0) = 0 forα 6≡ 0 (mod 1)
and χα(0) = 1 for α≡ 0 (mod 1). Then we have

Ni (u) =∑
α
χα(u) (diα≡ 0 (mod 1),0 ≤α< 1).

In fact, for u = 0, both sides have the value 1; for u 6= 0, the right–hand side can be

written as
∑di−1
ν=0 ζν, with ζ= χ1/di (u); and ζ is then a di th root of unity, equal to 1 if and

only if u is a di th power in k∗.
Using this in (2), we get:

N = ∑
u,α

χα0 (u0) · · ·χαr (ur )

(L(u) = 0; diαi ≡ 0 (mod 1), 0 ≤αi < 1).

As there are qr points in L(u) = 0, the terms in the above sum which correspond to
α0 = ·· · = αr = 0, being all equal to 1, give a sum qr . We now show that those terms
for which some, but not all, of the αi are 0, give a sum 0. In fact, consider e.g. those
for which α0, . . . ,αs−1 have given values, other than 0, and αs = ·· · = αr = 0, with s ≤ r ;

3As to this, cf. Hasse, J. Reine Angew. Math. vol. 172 (1935) pp.37–54. I regret that I did not quote either of
these papers, where the connection between various kinds of exponential sums and the Riemann hypothesis
is quite clearly expressed, in my recent note on the same subject, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948)
pp. 204–207.
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as there are qr−s points (u) in the variety L(u) = 0 for which u0, . . . ,us−1 have arbitrarily
assigned values, the sum of those terms is

qr−s
s−1∏
i=0

(∑
ui

χαi (ui )

)
,

and this is 0 since each factor is 0. This gives

N = qr+∑
u,α

χα0 (u0) . . .χαr (ur )

(L(u) = 0; diαi ≡ 0 (mod 1), 0 <αi < 1).

In this, we replace the ui , respectively, by ui /ai , and get

N = qr +∑
α
χα0 (a−1

0 ) · · ·χαr (a−1
r ) ·S(α)

(diαi ≡ 0 (mod 1),0 <αi < 1),

if we put, for any values of αi satisfying (q −1)αi ≡ 0 (mod 1),αi 6≡ 0 (mod 1):

S(α) = S(α0, . . . ,αr ) = ∑∑
ui=0

χα0 (u0) . . .χαr (ur ).

As to the latter sum, the terms for which u0 = 0 are 0, and we may exclude them; we may
then put ui = u0vi (1 ≤ i ≤ r ); the terms, in our sum, corresponding to given values of
the vi (satisfying 1+∑r

i=1 vi = 0) give

χα1 (v1) · · ·χαr (vr )
∑

u0 6=0
χβ(u0),

with β=∑r
i=0αi , and this last sum is q −1 for β≡ 0 (mod 1), and 0 otherwise, so that in

the latter case S(α) is 0.
Let us therefore define, for any set of αi satisfying the conditions

(q −1)αi ≡ 0, αi 6≡ 0,
r∑

i=0
αi ≡ 0 (mod 1),

a number j (α) by the relation

j (α) = ∑
1+v1+···+vr =0

χα1 (v1) · · ·χαr (vr )

= 1

q −1

∑
u0+···+ur =0

χα0 (u0) · · ·χαr (ur ).

In terms of the j (α), the number N of solutions of
∑r

i=0 ai xni
i = 0 is now seen to be given

by

N = qr + (q −1)
∑
α
χα0 (a−1

0 ) · · ·χαr (a−1
r ) · j (α)

(diαi ≡ 0;
∑

αi ≡ 0 (mod 1);0 <αi < 1).
(3)

The j (α) may be called the Jacobi sums for the field k; they were first introduced
and studied, for the case of a prime field, by Jacobi [2, a,b], later by Stickelberger [7],
and more recently by Davenport and Hasse [5]. They are closely related to the Gaussian
sums for k:

g (χ) = ∑
x∈k

χ(x)ψ(x),

whereψ is a character of the additive group of k, chosen once for all, and not everywhere
equal to 1, and where χ is any one of the above defined multiplicative characters, other
than χ0. For the convenience of the reader, we shall briefly recall some of the known
properties of these sums. In the first place, in the sum which defines g (χ), we may, as χ
is not χ0, restrict x to be 6= 0. Then we get

g (χ)g (χ) = ∑
y 6=0

∑
x 6=0

χ(x y−1)ψ(x − y),
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where we may substitute x y for x in the sum for x, and then interchange the order of
summations:

g (χ)g (χ) = ∑
x 6=0

χ(x)
∑
y 6=0

ψ[(x −1)y].

As the sum of all values of ψ on k is 0, the second sum has the value q −1 for x = 1,
and −1 for x 6= 1; as the sum of all values of χ on k∗ is 0, this gives

(4) g (χ)g (χ) = q.

Now, in the definition of g (χ), write t x for x with any t 6= 0 in k; this gives

g (χ) =χ(t )
∑
x
χ(x)ψ(t x),

hence, using (4), and interchanging x and t :

χ(x) = g (χ)

q

∑
t
χ(t )ψ(t x),

which is also true for x = 0; this is the Fourier expansion of χ(x) on k according to the
additive characters of k. Using this in the definition of j (α), we get

(q −1) j (α) = q−r−1 · g (χα0 ) · · ·g (χαr )
∑

t
χα0

(t0) · · ·χαr
(tr )

· ∑∑
ui=0

ψ

(∑
i

ti ui

)
.

But, in the additive groups of all vectors (u) = (u0, . . . ,ur ), the vectors satisfying
∑

ui = 0
form a subgroup of qr elements, on which ψ

(∑
i ti ui

)
is a character; the sum of the

values of this character on the subgroup must therefore be either qr , if the character
has the constant value 1, or 0 otherwise. The former case occurs if and only if all the
ti are equal, since otherwise we can solve the equations

∑
ui = 0,

∑
ti ui = z, where z

is any element of k, e.g. one such that ψ(z) 6= 1. As we have
∑
αi ≡ 0 (mod 1) by the

definition of j (α), this gives

j (α) = 1

q
g (χα0 ) · · ·g (χαr ).

As a consequence, we have

j (α) j (α) = qr−1,

and therefore

|N −qr | ≤ M(q −1)q (r−1)/2,

where M is the number of systems of rational numbers αi satisfying

niαi ≡ 0,
∑
αi ≡ 0 (mod 1), 0 <αi < 1,

and is therefore an integer depending only upon the ni .
From the above results, we can easily derive the number N1 of solutions of the equa-

tion
∑r

i=0 ai xni
i +1 = 0. In fact, let N , as before, be the number of solutions of

∑r
i=0 ai xni

i =
0, and let N ′ be the number of solutions of

∑r
i=0 ai xni

i + xq−1
r+1 = 0. The previous results

apply to the latter equation, with dr+1 = nr+1 = q −1. But, since xq−1
r+1 has the value 1,

except for xr+1 = 0, we have

N ′ = (q −1)N1 +N .

This gives at once an expression for N1; in order to write it more conveniently, we shall
define the symbol j (α) even in the case when some, but not all, of the αi are 0. Let
the β j be numbers, satisfying (q −1)β j ≡ 0,

∑
j β j ≡ 0 (mod 1), and not all ≡ 0 (mod 1);
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assume that s of them are ≡ 0 (mod 1), and let α0, . . . ,αr be the others, in any order;
then we put j (β) = (−1)s j (α). This being so, the formula for N1 can be written as

N1 = qr +∑
α
χα0 (a−1

0 ) · · ·χαr (a−1
r ) j

(
α0, . . . ,αr ,−

r∑
i=0

αi

)
(diαi ≡ 0 (mod 1),0 <αi < 1),

and we get, as before:
|N1 −qr | ≤ M1qr /2,

where M1 is now given by

M1 = (d0 −1) · · · (dr −1) < n0n1 · · ·nr .

It is a matter of considerable interest to be able to compare the number of solutions of
an equation (or, more generally, the number of rational points on an algebraic variety)
in a given finite field and in all the extensions of finite degree of that field. This can
easily be done, for the type of equations under consideration in this note, if we use a
relation, due to Davenport and Hasse [5], between Gaussian sums in a finite field and in
its extensions. We shall first give a brief account, in elementary language, of the proof of
Davenport and Hasse for this relation.

Let k ′ be an extension of k, of degree ν; for y in k ′, let N (y) and T (y) denote the
norm and the trace of y , respectively, over k. If w denotes, as before, a generator of
the multiplicative group k∗, there is a generator z of k ′∗, such that N (z) = w ; then, if
we denote, as before, by χ′

α(y) the multiplicative character on k ′ determined by χ′
α(z) =

e2πiα, we have, for (q −1)α≡ 0 (mod 1), χ′
α(y) =χα[N (y)]. We also put ψ′(y) =ψ[T (y)];

this is an additive character of k ′, not everywhere equal to 1 since it is known that T (y)
maps k ′ on k. Let now g ′(χ′

α) be the Gaussian sum in k ′:

g ′(χ′
α) = ∑

y∈k ′
χ′
α(y)ψ′(y).

The theorem of Davenport and Hasse is as follows:

(5) − g ′(χ′
α) = [−g (χα)]ν.

In order to prove this, consider the polynomials with coefficients in k, and highest coef-
ficient 1; to every such polynomial

F (X ) = X n + c1X n−1 +·· ·+cn ,

of degree n ≥ 1, we attach the number

λ(F ) =χα(cn)ψ(c1).

For two such polynomials F1,F2, we have λ(F1F2) = λ(F1)λ(F2). If we also denote by
n(F ) the degree of such a polynomial F , and by U an indeterminate, this gives the formal
identity

1+∑
F
λ(F ) ·U n(F ) =∏

P
[1−λ(P ) ·U n(P )]−1,

where the sum in the left–hand side is taken over all polynomials F over k, of degree
≥ 1, with highest coefficient 1, and the product in the right–hand side is taken over all
irreducible polynomials P over k, with highest coefficient 1. As usual, this follows at
once from the fact that every F can be expressed in a unique manner as product of
powers of irreducible polynomials.

In the sum in the left hand–side, consider first the terms which correspond to poly-
nomials F (X ) = X + c of degree 1; the sum of these terms is equal to g (χα)U . As to the
sum of the terms corresponding to any given degree n > 1, it is 0, since, with the above
notations, it is equal to

qn−2
∑
cn

χα(cn)
∑
c1

ψ(c1) ·U n ,
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where both sums are taken over k and are therefore 0. This gives

(6) 1+ g (χα)U =∏
P

[1−λ(P ) ·U n(P )]−1.

Similarly, if F ′(X ) = X n +d1X n−1 +·· ·+dn is a polynomial over k ′, we write

λ′(F ′) =χ′
α(dn)ψ′(d1),

and, taking another indeterminate U ′, get the formal identity

(6′) 1+ g ′(χ′
α)U ′ =∏

P ′
[1−λ′(P ′) ·U ′n(P ′)]−1

where the product is taken over all irreducible polynomials P ′ over k ′, with highest co-
efficient 1.

Now let P be as above; let P ′ be one of the irreducible factors of P over k ′; let −ξ be
one of the roots of P ′. Then ξ generates over k an extension k(ξ) of degree n = n(P ), and
over k ′ an extension k ′(ξ) of degree n′ = n(P ′); as k ′(ξ) is the composite of k(ξ) and k ′,
its degree over k must be the l.c.m. of the degree n of k(ξ) over k, and of the degree ν of
k ′ over k, i.e. equal to nν/d if we write d = (n,ν). This gives n′ = n/d ; hence P has over
k ′ exactly d irreducible factors, all of degree n/d . Moreover, if a and b are respectively
the norm and the trace of ξ, taken in k(ξ) relatively to k, we have

P (X ) = X n +bX n−1 +·· ·+a,

hence
λ(P ) =χα(a)ψ(b).

Similarly, if a′ and b′ are the norm and the trace of ξ, taken in k ′(ξ) relatively to k ′, we
have

λ′(P ′) =χ′
α(a′)ψ′(b′) =χα(N a′)ψ(T b′),

where N a′ and T b′ are the norm of a′ and the trace of b′, taken in k ′ relatively to k;
hence N a′ and T b′ are respectively equal to the norm and to the trace of ξ, taken in
k ′(ξ) relatively to k. We can therefore also obtain N a′ by taking the norm of ξ in k ′(ξ)
relatively to k(ξ), this being equal to ξν/d , and then the norm of this in k(ξ) relatively to
k, which is aν/d . Hence we have N a′ = aν/d , and similarly T b′ = (ν/d)b, and therefore

λ′(P ′) =λ(P )ν/d .

Now, in the right–hand side of (6′), we can put together the d factors corresponding to
all the irreducible factors of P over k ′; if, moreover, we replace U ′ by Uν, we get

[1−λ(P )ν/dUνn/d ]−d ,

which can also be written as
ν−1∏
ρ=0

[1−λ(P ) · (ζρU )n]−1

where ζ is any primitive νth root of unity. This gives

1+ g ′(χ′
α)Uν =

ν−1∏
ρ=0

∏
P

[1−λ(P ) · (ζρU )n(P )]−1

=
ν−1∏
ρ=0

(1+ g (χα)ζρU )

= 1+ (−1)ν+1g (χα)νUν,

which proves (5).
Now, Nν being the number of solutions of an equation of type (1), with or without

constant term, over the extension of degree ν of the ground–field k, it is easy, using the
above results, to give a simple expression for the “generating power–series” for Nν, i.e.
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for the formal power–series
∑∞

1 NνUν; this turns out to be the expansion of a certain
rational function in U . We shall, however, illustrate this idea by considering the case of
the homogeneous equation

(7) a0xn
0 +·· ·+ar xn

r = 0,

considered as the equation of a variety (without singular points) in the projective space
P r of dimension r over k. The number N of rational points over k, on that variety,
is related to the number N of solutions of the same equation in affine space by N =
1+ (q −1)N , so that, putting d = (n, q −1), we get, from our earlier results:

N = 1+q +·· ·+qr−1 +∑
α
χα0

(a0) · · ·χαr
(ar ) · j (α)

(dαi ≡ 0,
∑

αi ≡ 0 (mod 1); 0 <αi < 1).

Now call Nν the number of rational points, on the variety defined by (7), over the exten-
sion kν of k of degree ν; we shall calculate the series

∑∞
1 NνUν−1.

In order to do this, consider any set of rational numbers α0, . . . ,αr satisfying nαi ≡
0,

∑
αi ≡ 0 (mod 1), 0 <αi < 1. For this set, letµ=µ(α) be the smallest integer such that

(qµ−1)αi ≡ 0 (mod 1) for 0 ≤ i ≤ r ; then the extensions kν of k such that (qν−1)αi ≡ 0
(mod 1) are those for which ν is a multiple of µ, and those only. Choosing a primitive
root in kµ, we can now, as before, define in kµ the characters χαi , the Gaussian sums
g (χαi ), and the Jacobi sum

j (α) = 1

qµ
g (χα0 ) · · ·g (χαr ).

Furthermore, if we denote by χ′
αi

, g ′(χ′
αi

) and j ′(α) the corresponding characters and
sums for the extension k ′ = kλµ of k of degree λµ, where λ is any integer, we get from
our earlier results:

χ′
αi

(ai ) =χαi (ai )λ, g ′(χ′
αi

) = (−1)λ−1g (χαi )λ, j ′(α) = (−1)(λ−1)(r−1) j (α)λ.

Then we get:

∞∑
1

NνUν−1 =−
r−1∑
h=0

d

dU
log(1−qhU )

+ (−1)r
∑
α

1

µ(α)

d

dU
log[1−C (α) ·Uµ(α)]

(nαi ≡ 0,
∑

αi ≡ 0 (mod 1);0 <αi < 1).

(8)

where we have put
C (α) = (−1)r−1χα0

(a0) · · ·χαr
(ar ) · j (α).

Furthermore, it is easily seen that C (qα) = C (α), since x → xq is an automorphism of
kµ which leaves the ai invariant. Therefore, in the last sum in (8), the µ(α) terms corre-
sponding to the set (α) = (α0, . . . ,αr ) and to the sets (qρα) for 1 ≤ ρ ≤µ−1 are all equal,
so that, putting them together, we can make the denominator µ(α) disappear.

Let A be the number of solutions, in rational numbersαi , of the system nαi ≡ 0,
∑
αi ≡

0 (mod 1), 0 < αi < 1. Then one finds4 that the Poincaré polynomial (in the sense of
combinatorial topology) of the variety defined, in the projective space P r over complex
numbers, by an equation of the form

c0xn
0 +·· ·+cr xn

r = 0

is equal to
r−1∑
h=0

X 2h + A ·X r−1.

4As obligingly communicated to me by P. Dolbeault in Paris.
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This, and other examples which we cannot discuss here, seem to lend some sup-
port to the following conjectural statements, which are known to be true for curves, but
which I have not so far been able to prove for varieties of higher dimension.

Let V be a variety without singular points, of dimension n, defined over a finite field
k with q elements. Let Nν be the number of rational points on V over the extension kν
of k of degree ν. Then we have

∞∑
1

NνUν−1 = d

dU
log Z (U ),

where Z (U ) is a rational function in U , satisfying a functional equation

Z

(
1

qnU

)
=±qnχ/2UχZ (U ),

with χ equal to the Euler–Poincaré characteristic of V (intersection–number of the di-
agonal with itself on the product V ×V ).

Furthermore, we have:

Z (U ) = P1(U )P3(U ) · · ·P2n−1(U )

P0(U )P2(U ) · · ·P2n(U )
,

with P0(U ) = 1−U , P2n(U ) = 1−qnU , and, for 1 ≤ h ≤ 2n −1:

Ph(U ) =
Bh∏
i=1

(1−αhiU )

where the αhi are algebraic integers of absolute value qh/2.
Finally, let us call the degrees Bh of the polynomials Ph(U ) the Betti numbers of the

variety V ; the Euler–Poincaré characteristic χ is then expressed by the usual formula
χ = ∑

h(−1)hBh . The evidence at hand seems to suggest that, if V is a variety without
singular points, defined over a field K of algebraic numbers, the Betti numbers of the
variety Vp, derived from V by reduction modulo a prime ideal p in K , are equal to the
Betti numbers of V (considered as a variety over complex numbers) in the sense of com-
binatorial topology, for all except at most a finite number of prime ideals p. For instance,
consider the Grassmann variety Gm,r , the points of which are the r –dimensional linear
varieties in a projective m–dimensional space, over a field with q elements. The num-
ber of rational points on the variety is easily seen to be F (q), where F is the polynomial
defined by

F (X ) = (X m+1 −1)(X m+1 −X ) · · · (X m+1 −X r )

(X r+1 −1)(X r+1 −X ) · · · (X r+1 −X r )
.

Then, if the above conjectures are true, the Poincaré polynomial of the Grassmann
variety Gm,r over complex numbers must be F (X 2). This is indeed so, as can easily be
verified from the well–known results of Ehresmann [8].5
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